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Global or local ischemia contributes to the pathogenesis of acute kidney injury (AKI). Currently there are no
specific therapies to prevent AKI. Potentiation of glycolytic metabolism and attenuation of mitochondrial respira-
tion may decrease cell injury and reduce reactive oxygen species generation from the mitochondria. Meclizine,
an over-the-counter anti-nausea and -dizziness drug, was identified in a ‘nutrient-sensitized’ chemical screen. Pre-
treatment with 100 mg/kg of meclizine, 17 h prior to ischemia protected mice from IRI. Serum creatinine levels at
24 h after IRI were 0.13 + 0.06 mg/dl (sham, n = 3), 1.59 + 0.10 mg/dl (vehicle, n = 8) and 0.89 4 0.11 mg/dl
(meclizine, n = 8). Kidney injury was significantly decreased in meclizine treated mice compared with vehicle
group (p <0.001). Protection was also seen when meclizine was administered 24 h prior to ischemia. Meclizine re-
duced inflammation, mitochondrial oxygen consumption, oxidative stress, mitochondrial fragmentation, and tubu-
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Kennedy pathway lar injury. Meclizine preconditioned kidney tubular epithelial cells, exposed to blockade of glycolytic and oxidative
G1Y_5013_/515 ) metabolism with 2-deoxyglucose and NaCN, had reduced LDH and cytochrome c release. Meclizine upregulated
Oxidative phosphorylation glycolysis in glucose-containing media and reduced cellular ATP levels in galactose-containing media. Meclizine

inhibited the Kennedy pathway and caused rapid accumulation of phosphoethanolamine. Phosphoethanolamine

recapitulated meclizine-induced protection both in vitro and in vivo.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Acute kidney injury (AKI) is a common clinical problem associated
with an increasing prevalence, high morbidity, mortality, and prolonged
length of hospitalization (Hsu et al., 2007; Lameire et al., 2005; Xue
et al., 2006). AKI is also a risk factor for progression to chronic kidney
disease (CKD) (Siew and Deger, 2012; Lo et al., 2009; Wald et al,,
2009; Ferenbach and Bonventre, 2015; Canaud and Bonventre, 2015).
Global or local ischemia contributes to the pathogenesis of AKI which
complicates various clinical conditions. Ischemia-reperfusion injury
(IRI) is also a risk factor for delayed graft function and chronic allograft
nephropathy (Wirthensohn and Guder, 1986; Brezis et al., 1984;
Fletcher et al., 2009). As the options to prevent AKI are few and its prog-
nosis is poor, novel interventional strategies are needed. Episodes of
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nonlethal ischemia can precondition the kidney protecting it against
subsequent ischemia (Park et al., 2001; Joo et al., 2006; Al et al., 2007;
Bonventre, 2002). It would be highly desirable to mimic ischemic pre-
conditioning with pharmaceutical intervention. While there are studies
reporting that agents, such as high mobility group box 1 (HMGB1) (Wu
et al,, 2014), isoflurane (Su et al., 2014), inhibitors of hypoxia inducible
transcription factor (HIF) or carbon monoxide (Bernhardt et al., 2006)
given to animals prior to the ischemic event are protective, in most
studies the agents are administered close to the time of IRI. Furthermore
the effects are not keep in sustained if given more than a few hours prior
to the IR, nor are the mechanisms understood.

Ischemia plays a central role in the initiation and establishment of
AKI because the nephron has a high energy demand and intrarenal ox-
ygen tensions in the outer medulla are low and further reduced by hy-
poperfusion (Brezis and Rosen, 1995). The kidney proximal tubular
epithelial cells are particularly sensitive to IRI because they have mini-
mal glycolytic capacity and rely on mitochondrial metabolism for ATP
synthesis (Wirthensohn and Guder, 1986; Klein et al., 1981; Uchida
and Endou, 1988). In addition, in the setting of tubular cell injury, mito-
chondrial respiration can result in the generation of oxidants. Therefore,
shifting energy metabolism from mitochondrial respiration to glycolysis
could be a viable therapeutic strategy to minimize cell injury.

2352-3964/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Meclizine was identified by using a small molecule screening strate-
gy to identify clinically useful drugs that are capable of shifting cellular
energy metabolism from respiration to glycolysis (Gohil et al., 2010).
Meclizine is an “over-the-counter” FDA approved histamine receptor
blocker used for the treatment of nausea, vomiting, and dizziness
associated with motion sickness and has been used for many decades.
Meclizine shifts cellular energy metabolism from mitochondrial respira-
tion to glycolysis (Wirthensohn and Guder, 1986), via direct targeting of
cytosolic phosphoethanolamine metabolism (Gohil et al., 2013). We
found that meclizine reduced inflammation, mitochondrial oxygen
consumption, oxidative stress, mitochondrial fragmentation and tubular
injury after kidney IRI. Meclizine pretreatment of HK-2 cells reduced
NaCN-induced LDH release, cytochrome c release and mitochondrial-
dependent ATP production and increased lactate production. In addition,
meclizine inhibited the Kennedy pathway and led to rapid accumulation
of phosphoethanolamine. Exogenous addition of ethanolamine in vivo
and in vitro was protective, suggesting that meclizine mediated protec-
tion occurs via cytosolic phosphoethanolamine metabolism. Thus, our
study not only offers a clinically used drug as a potential therapeutic
agent but also identifies a previously unidentified pathway that can be
targeted for kidney IRI.

2. Material & Methods
2.1. Animal Experiments

All mouse studies followed the fundamental guidelines for Animal
Care and Use in Research and Education and were performed in
accordance with the animal use protocol approved by the Institu-
tional Animal Care and Use Committee of Harvard Medical School.
Experiments were performed in 8-10 wk old male C57BL/6 mice
purchased from Charles River Laboratories. Animals were anesthetized
with sodium pentobarbital (60 mg/kg body weight intraperitoneally)
prior to surgery. Kidneys were exposed through flank incisions and ren-
dered ischemic by clamping the renal pedicles with nontraumatic
clamps (Roboz, Rockville, MD). After 27 min at 36.5-37 °C the clamps
were removed. Male mice were used because they are more susceptible
to ischemia and have a more consistent response to ischemia (Park
et al,, 2004). Successful renal ischemia and reperfusion was document-
ed by visual inspection of the kidney. Blood pressure was not monitored
in this study. Two hours after surgery, 1 ml of NaCl 0.9% was adminis-
tered intraperitoneally. Some animals were subjected to sham surgery.
In the toxin AKI models mice received a one-time intraperitoneal injec-
tion of cisplatin (25 mg/kg body weight, Sigma-Aldrich, St. Louis, MO,
USA) or aristolochic acid (10 mg/kg body weight, Sigma-Aldrich) in
NaCl 0.9%. The control group was administered NaCl 0.9% only. Mecli-
zine or vehicle (10% Kolliphor® EL in PBS) was administered intraperi-
toneally at different doses and different time-points.

For the dose-response experiment, mice received 10, 30, 60 or
100 mg/kg body weight of meclizine 17 h and 3 h before IRI. For
the time-course experiment, one injection of meclizine
(100 mg/kg) was given 8, 17 or 24 h before IRI. For preconditioning
experiments, 100 mg/kg of meclizine was injected 17 h before IRI.
Some mice received two injections of meclizine (100 mg/kg) O
(after removing clamps) and 8 h after IRI. Other animals were
injected with ethanolamine (150 mg/kg body weight of ethanol-
amine, Sigma-Aldrich), pH 7.4 in phosphate buffered saline (PBS)
or vehicle (PBS) administered intraperitoneally 2 h before, immedi-
ately after and 24 h after IRI. Mice were sacrificed 24 or 48 h after re-
lease of the pedicle clamps, 3 days after cisplatin injection or 5 days
after aristolochic acid, and 48 h after ethanolamine injection for tis-
sue analysis. Mice were randomly divided into experimental groups.
Serum creatinine was measured in all mice. Before sacrifice, some
animals were placed in metabolic cages for 3 h to collect urine for
kidney injury molecule-1 (KIM-1) measurement.

2.2. Renal Function

Serum creatinine was measured by the picric-acid method using the
Beckman Creatinine Analyzer Il (Beckman, Brea, CA). Serum blood urea
nitrogen (BUN) was measured using the Infinity Urea Kit (Thermo
Scientific, West Sussex, UK).

2.3. KIM-1 Measurement

Urine KIM-1 concentration was measured using the Luminex xMAP
technology (Vaidya et al., 2011). Briefly, 30 pl of urine sample was incu-
bated with ~6000 anti-mouse KIM-1-coupled beads/well for 1 h follow-
ed by 3 washes with PBS-Tween 20 (PBST). Beads were then incubated
with biotinylated KIM-1 detection antibody for 45 min and washed
again 3 times with PBST. Quantification was achieved by incubating
samples with picoerythrin-coupled streptavidin (Invitrogen) and excit-
ing at 532 nm. The signal from this fluorochrome was detected using the
Bio-Plex 200 system (BioRad ) and is directly proportional to the amount
of antigen bound to the microbead surface. Data were interpreted using
a 13-point standard five parametric logistic regression model. All sam-
ples were analyzed in triplicate and the intra-assay variability was less
than 5%.

24. Histology

Kidneys were fixed in 10% formalin overnight and then placed into
70% ethanol. Paraffin sections of embedded kidneys were stained with
hematoxylin and eosin (H&E) and scored in a blinded fashion. The
acute tubular necrosis score was determined by quantitating detach-
ment of epithelial cells, loss of brush border, cast formation, inflamma-
tory cell infiltrate and scored from O to 4 based on the % of the area that
presented these alterations. 0, no lesion; 1, <25% of parenchyma affect-
ed by the lesion; 2, 25-50% of parenchyma affected by the lesion; 3, 50-
75% of parenchyma affected by the lesion and 4, >75% of parenchyma
affected by the lesion.

2.5. Immunofluorescence Staining

Kidneys were fixed in 4% PLP (4% paraformaldehyde, 75 mM L-
lysine, 10 mM sodium periodate) for 2 h at 4 °C, and then placed in
30% sucrose overnight. Tissues were snap frozen in optimal cutting tem-
perature compound (OCT, Sakura FineTek, Torrance, CA) and cryosec-
tions of 7 uM were mounted on microscope slides. Sections were
incubated overnight with primary antibodies as indicated: anti-F4/80
(hybridoma supernatant) and anti-GR1+ (eBioscience), or anti-
Kidney-specific cadherin (Ksp-cadherin) (Morizane et al., 2013). Slides
were then incubated with Cy3 or FITC labeled secondary antibodies
(Jackson ImmunoResearch). Sections were mounted in Vectashield con-
taining DAPI to stain the nuclei (VectorLabs, Burlingame, CA). Neutro-
phils were expressed as the mean number of GR1 + cells per 400 x
magnification field and macrophages as the mean per unit area of
F4/80 + cells in 400x magnification fields using Image]. Ksp-
cadherin positive area was also expressed as the mean of KSP stain
positive area in 200 x magnification fields. Ten randomly selected
images per mouse were quantified using Image] software (http://
rsbweb.nih.gov/ij/) (Schrimpf et al., 2012; Grgic et al., 2012). All im-
ages were obtained by standard or confocal microscopy (Eclipse 90i,
C1 Eclipse, respectively; both from Nikon).

2.6. Quantitative RT-PCR

Total RNA was isolated from cells or kidneys using the TRIzol reagent
(Sigma) according to the standard protocol. First-strand cDNA was syn-
thesized using the MML-V reverse transcriptase (Promega, USA). Real-
time PCR was performed using the iQ-SYBR Green Supermix (BioRad)
and the iQ5 Multicolor Real-time PCR Detection System (BioRad) for
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mRNA detection. Rn18s and Actb were used as housekeeping genes. The
mRNA expression was normalized to housekeeping genes, and relative
mRNA levels are expressed as fold change compared with the DMSO
treated cells or sham animals. Primers used were as follows: Rn18s for-
ward: ATGGCCGTTCTTAGTTGGTG, reverse: GAACGCCACTTGTCCCTCTA;
Havcr1 forward: AAACCAGAGATTCCCACACG, reverse: GTCGTGGGTCTT
CCTGTAGC; Tnf forward: CCCTGAGGGGGCTGAGCTCAA, reverse: ACCT
GCCCGGACTCCGCAAA; I11b forward: CCTTCCAGGATGAGGACATGA, re-
verse: AACGTCACACACCAGCAGGTT; 116 forward: TAGTCCTTCCTACCCC
AATTTCC, reverse: TTGGTCCTTAGCCACTCCTTC; Ccl2 forward: TGCATC
TGCCCTAAGGTCTTC, reverse: AAGTGCTTGAGGTGGTTGTGG; Nos2 for-
ward: ACCCTCCTCGTTCAGCTCACCTTC, reverse: TCGCTCCAAGATTCCC
TGCACCA; Hmox1 forward: TTCCCGAACATCGACAGCCCC, reverse:
AGCAGGAAGGCGGTCTTAGCCTC; Slc2a1 forward: GCTGTGCTTATGGG
CTTCTC, reverse: CACATACATGGGCACAAAGC; Pgk1 forward: GCCACT
TGCTGTGCCAAATG, reverse: CCCAGGAAGGACTTTACCTT; Hk2 forward:
GGACTGGACCGTCTGAATGT, reverse: ACAGTTCCTTCACCGTCTGG; Ldha
forward: GAAGATAAGTGGTTTTCCCAAAAAC-3 reverse: CTTTGAGTTT
GATCACCTCATAAGC and Actb forward: CCAACCGCGAGAGAGTGA, re-
verse: TCCATCACGATGCCAGTG.

2.7. Assays of Mitochondrial Physiology

C57BL/6 mice were treated with two intraperitoneal injections of
100 mg/kg meclizine at 17 and 3 h before sacrificing. Mitochondria
were isolated from kidneys by differential centrifugation and resus-
pended in experimental buffer containing glutamate and malate as re-
spiratory substrates (125 puM) to a final concentration of 0.5 mg/ml
(Gohil et al., 2010). Coupled and uncoupled respiration was measured
following addition of 0.1 mM ADP and 5 uM carbonyl cyanide m-
chlorophenyl hydrazone, respectively. O, consumption was monitored
with a Fiber Optic Oxygen Sensor Probe (Ocean Optics) at 25 °C.

2.8. Electron Microscopy

Pieces of mouse kidney tissue were fixed in 4% paraformaldehyde,
post-fixed in 1% osmium tetroxide, dehydrated in graded alcohols, and
embedded in Epon. A tissue block of approximately 1 mm? was collect-
ed from each kidney, including a portion of renal cortex and outer
medulla for standard processing. Semithin sections of each block were
stained with toluidine blue stain and examined by light microscopy to
select for ultrathin sectioning. Ultrathin sections were cut, placed on
nickel grids, and examined using a digital electron microscope (JEOL
USA JEM-1010). Mitochondrial area was measured by using Image] soft-
ware (Birk et al.,, 2013).

2.9. Cell Culture

The HK-2 (human kidney-2; human proximal epithelial cell) and LLC-
PK1 cells were purchased from the American Type Culture Collection.
Cells were cultured in DMEM or DMEM/F12 containing 10% fetal bovine
serum, in a humidified atmosphere with 5% CO- at 37 °C.

2.10. Cell Injury Models

Cells were treated with sodium cyanide (NaCN) (1.5 mM) and 2-
deoxyglucose (2-DG) (10 mM) to induce cellular stress and injury by
chemical anoxia. In this study, cells were seeded in 12-well plates at
0.5 x 10° cells/well or in 6 cm dishes at 2.5 x 10° cells/well, incubated
overnight, and pretreated with different concentrations of meclizine
(0, 10, 25 uM) or ethanolamine (0, 10, 100 uM) for 17 h. After 17 h pre-
conditioning with meclizine or ethanolamine, the cells were treated
with NaCN and 2-DG for 2 h.

2.11. Measurement of Lactate Production

Increased lactate production was used as a marker of upregulation of
glycolysis. Briefly, HK-2 cells were subcultured 1:4 from a confluent cul-
ture plate into a 10 cm dish. Once confluence was reached, cells were
treated with 25 uM of meclizine or vehicle for 17 h. After incubation
cells were washed and incubated in 1 ml PBS at 37 °C for 1 h, and
then incubated in 1 ml of PBS containing 1 mM glucose at 37 °C for
1 h. Samples were collected and 50 pl of 1.6 M perchloric acid was
added to 1 ml of PBS containing 1 mM glucose to stop metabolism.
Lactate production was measured at a wavelength of 340 nm after incu-
bation of 100 pl of each sample with a 1 ml reaction buffer (0.1 M Tris,
0.4 M hydrazine, 0.4 mM EDTA, 10 mM MgS0O,4, 80 mg/ml NAD, LDH 5
mg/ml, pH 8.5) for 1 h at room temperature. Results were normalized
to the protein content of the sample.

2.12. LDH Assay

Cell viability after various treatments was evaluated by LDH micro-
plate titer assay as previously described (Chen et al., 1990). At the end
of various treatments, 100 pul of culture medium was collected to
measure media LDH levels. Then total LDH levels were determined by
addition of Triton X-100 (final concentration 0.1%) to the cells at 37 °C
for 30 min to release all LDH. The percentage of LDH release was calcu-
lated by dividing the media LDH after a treatment by total LDH.

2.13. MTT Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) tetrazolium reduction assay was performed as previously
described (Alley et al., 1988).

2.14. ATP Measurement

Cells were seeded into a 12 well plate (0.5 x 10° cells/well) and
allowed to grow overnight. Growth medium (DMEM or DMEM/F12
containing 10% fetal bovine serum) was then replaced with 25 mM glu-
cose or 10 mM galactose medium and cells cultured for 24 h under 21%
or 5% O, for 24 h. For the meclizine or ethanolamine preconditioning ex-
periment, after incubation with 25 uM of meclizine, 10 pM ethanol-
amine or DMSO for 17 h growth medium was replaced with 10 mM
galactose medium and cells were cultured for another 24 h. ATP content
was assessed using the ATP Bioluminescent Assay Kit (Sigma-Aldrich,
St. Louis, MO, USA) and normalized to total cellular protein.

2.15. Determination of the Intracellular Concentration
of Phosphoethanolamine

Intracellular concentration of phosphoethanolamine in meclizine-
treated HK-2 cells was determined as follows: HK-2 cells were seeded
into a 6 cm plate (0.25 x 10° cells/dish). After 20 h of growth, cells
were treated with 25 pM meclizine or DMSO for approximately 17 h.
Cells were scraped, collected in methanol extraction solution (80%
methanol, 20% H,0), and phosphoethanolamine levels were quantified
by liquid chromatography-mass spectrometry (LC-MS) (Gohil et al.,
2013).

2.16. Analysis of the Release of cytochrome ¢

To determine the cytochrome c released from mitochondria during
chemical hypoxia with or without meclizine pretreatment, cells were
permeabilized with 0.05% (wt/vol) digitonin in an isotonic sucrose
buffer for 2-4 min (Brooks et al., 2009). The cytosolic fraction released
by digitonin was collected for western blot analysis using specific anti-
bodies to cytochrome c.
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2.17. Western Blot Analysis onto a PVDF membrane, and subjected to Western blotting using anti-
HIF-1a (Novus Biologicals, Littleton, CO), anti-cytochrome c (BD
Pharmingen, San Diego, CA), or anti-B-actin (Cell signaling), antibodies.
[>-actin was used as a loading control. Proteins were visualized using
HRP-conjugated secondary antibodies (Dako, Glostrup, Denmark) and
ECL detection reagents (GE Healthcare, Milwaukee, WI). The ECL film

HIF1a stabilization and the release of cytochrome c were analyzed
by western blot analysis. Extracts (20 pg/lane protein) from cells
pretreated with either 0.1% DMSO, 25 uM meclizine or 500 uM CoCl,
(Sigma) or digitonin lysate, were separated by SDS-PAGE, transferred
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Fig. 1. Pretreatment with meclizine protects the kidney against IRI. (A) Scheme illustrating the strategy for the dose-response experiments. (B) Serum creatinine levels at 24 h after IR], in
animals pretreated 17 and 3 h before IRI with vehicle or various doses of meclizine. (C) Scheme illustrating the strategy comparing effectiveness of treatment at various times prior to IRI.
(D) Serum creatinine levels at 24 h after IRI, in animals pretreated with a one-time injection of meclizine at different time-points before IRI. (E) BUN levels at 24 h after IRI in mice
pretreated 17 h before IRI with a one-time injection of 100 mg/kg of meclizine or vehicle. Sham (n = 3), IRI+Veh (n = 8) and IRI+ meclizine (n = 8). (F) Real-time PCR analysis of
KIM-1 mRNA (Havcr1) in sham, vehicle and meclizine pretreated mice at 48 h after IRI. Mice were pretreated 17 h before IRI with a one-time injection of 100 mg/kg of meclizine or vehicle.
Sham (n = 3), IRI+Veh (n = 4) and IRI+ meclizine (n = 4). (G) Representative images after hematoxylin and eosin (H & E) and Periodic acid-Schiff (PAS) staining of tissue taken 48 h
after IRI. Original magnification 200 x, scale bar = 100 um. (H) Tubular necrosis was semi-quantified by scoring H&E stained slides. Sham (n = 3), IR+ Veh (n = 8) and IR+ meclizine
(n=28)."*p<0.001; **p<0.01 and *p < 0.05. Statistical significance was determined using one-way ANOVA followed by Tukey's post-hoc test. The columns and error bars are the mean +

SEM.
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was scanned using a commercial office scanner (Epson Expression 1680
Scanner) and evaluated in Image].

2.18. Statistical Analysis

Statistical analysis was performed using Prism 6.0 (GraphPad Soft-
ware Inc.). Evaluation of the data was carried out using the unpaired
two-tailed t test when two groups were compared or one-way Analysis
of Variance (ANOVA) followed by Tukey's post-test when multiple
groups were compared. A p value lower than 0.05 was considered to
be significant. Statistical power analyses were performed to evaluate
sample numbers necessary for the main group comparisons reflected
in Fig. 1B and D. Animal number in each group was chosen to have a sta-
tistical power higher than 0.80 (Cohen, 1992; Faul et al., 2007, 2009).
When not specifically stated results are presented as means of at least
three independent experiments and error bars indicate 4+ SEM.

3. Results
3.1. Pretreatment With Meclizine Protects the Kidney Against IRI

To evaluate whether meclizine pretreatment protects the kidney
against IRI, we treated mice twice, 17 and 3 h before 27 min of ischemia,
with different doses of meclizine and analyzed kidney function 24 h
after surgery (Fig. 1A). A flow diagram for the meclizine dose-
response experiments is presented in Supplementary Fig. 1. Serum cre-
atinine levels were increased in mice subjected to IR], reflecting kidney
dysfunction (Fig. 1B). There was a dose-dependent protection afforded
by meclizine which was statistically significant at the 100 mg/kg dose
level. At this dose of meclizine serum creatinine levels were 0.90 +
0.10 (mean + SEM) mg/dl in the meclizine-treated group vs 1.40 +
0.20 mgy/dl in the vehicle group (p <0.01) (Fig. 1B). In a second set of
animals meclizine (100 mg/kg) was administered at different time
points before IRI (Fig. 1C). A flow diagram for the meclizine time course
experiments is presented in Supplementary Fig. 2. Kidney function was
analyzed 24 h after surgery. KIM-1 mRNA (Havcr1) levels and histology
were evaluated 48 h after surgery. When mice were treated with only
one dose of meclizine (100 mg/kg) 17 or 24 h before IRI, there was a sig-
nificant decrease in creatinine levels 24 h after reperfusion compared to
the respective vehicle-treated group (17 h pretreatment: 0.89 4 0.11 vs
1.59 4 0.10 mg/dl, p <0.001; 24 h pretreatment: 0.60 4- 0.17 vs 1.50 £+
0.25 mg/dl, p <0.05) (Fig. 1D). There was no difference in the amount of
body weight loss between the vehicle and meclizine (100 mg/kg 17 h
before IRI) treated mice 24 h after IRI (vehicle 24.35 4 0.4 to 22.45 +
1.03 g, meclizine: 24.90 + 0.74 to 22.13 4 0.69 g) or in weights 48 h
after vehicle or meclizine administration at 17 and 3 h prior to IRI
(23.60 4 0.40 g, vehicle; 23.88 + 0.38 g, meclizine). Pretreatment for
8 h before ischemia resulted in decreased serum creatinine levels 24 h
after reperfusion but this difference failed to meet statistical significance
when compared to the vehicle-treated group (Fig. 1D). Blood urea nitro-
gen (BUN) levels were also decreased in the group treated 17 h before
injury with 100 mg/kg meclizine in comparison to the vehicle group
(90 £ 10vs 122 4 7 mg/dl, p < 0.05) (Fig. 1E). In addition to serum cre-
atinine and BUN, there was less upregulation of Havcrl mRNA in the
48 h post-IRI kidney from mice pretreated 17 h prior to ischemia with
meclizine (123 + 14 fold increase) when compared to vehicle-treated
mice (311 £ 22 fold increase; p < 0.001) (Fig. 1F). Pretreatment with
meclizine (100 mg/kg) 17 h before IRI reduced tubular necrosis score
when compared to the vehicle-treated IRI group (2.5 + 0.1 vs, 3.8 +
0.1 p<0.001) (Fig. 1G, H).

3.2. Inflammation After IRI Is Reduced With Meclizine (100mg/kg) Pretreat-
ment 17 h prior to IRl

Because inflammation contributes to IRI, we analyzed inflammatory
cell infiltration and cytokine production 48 h after IRI in animals

pretreated with meclizine or vehicle. As expected, there was an in-
crease in GR-1+ neutrophils and F4/80 + macrophage infiltration
in the kidney subjected to IRI, as well as an increase in tissue
mRNA levels of inflammatory mediators: Il1b, Tnf, 1l6 and Ccl2
when compared to vehicle-treated sham non-ischemic animal kid-
neys (Fig. 2). In meclizine pre-treated animals there were fewer in-
filtrating neutrophils 48 h after ischemia (1.5 4+ 0.1 vs 3.6 + 0.8 cells
per high power field, p<0.05) (Fig. 2A and B). There was also a trend
toward reduced numbers of infiltrating F4/80+ macrophages
(Fig. 2C). Meclizine pretreatment resulted in reduced fold-
increases in mRNA expression of inflammatory cytokines Il1b
(4.38 4+ 0.96 vs 7.80 + 0.83 (vehicle-treated) p < 0.05), Tnf
(1.89 4 0.65 vs 8.47 £ 2.00, p <0.01), II6 (40 £ 16 vs 164 & 39,
p < 0.05) and the chemokine Ccl2 (5.6 + 1.0 vs 12.8 £ 2.2,
p <0.05) (Fig. 2D-G). Thus the protection afforded by pretreatment
with meclizine reduced inflammation after IRI.

3.3. Meclizine Inhibits Mitochondrial Respiration and Reduces Kidney
Injury After IRI

We tested meclizine as a potential therapeutic agent for kidney IRI
based on its previously reported activity as mitochondrial respiration
attenuating agent. While earlier work (Gohil et al., 2010, 2013) has
clearly shown that meclizine attenuates mitochondrial respiration
in an in vitro cell culture system, it is not known whether meclizine
would attenuate respiration when administered to a whole organ-
ism. Therefore, to test the effect of meclizine on kidney respiration,
mitochondria were isolated from the kidneys of mice pretreated
with meclizine. Mice were treated with two doses of meclizine
(100 mg/kg), 17 h and 3 h before sacrifice. Kidney mitochondria iso-
lated from mice that received meclizine, had decreased O, consump-
tion after ADP addition and a further decrease after exposure to the
uncoupling agent carbonyl cyanide 3-chlorophenylhydrazone
(CCCP), when compared with kidney mitochondria isolated from
vehicle-treated mice (Fig. 3A).

Heme-oxygenase-1 (Hmox1) and inducible nitric oxide synthase
(Nos2) are up-regulated after kidney injury, related to IR-induced
oxidative stress (Aragno et al., 2003; Szeto et al., 2011). As expected,
the kidney mRNA expression levels were up-regulated 24 h after IRI
in both meclizine and vehicle-treated animals. Meclizine-pretreated
mice subjected to IRI showed lower fold-increases of Hmox1 (7.09 +
2.01 fold) when compared with the vehicle-treated group (13.3 +
1.87 fold) (p <0.05) and lower increases in Nos2 (1.17 4+ 0.35, in
the meclizine group vs 2.94 4 0.74 in the vehicle-treated control
group, p <0.05), indicating a reduced oxidative stress (Fig. 3B and
C). To check the number of viable tubular cells after IRI, we evaluated
Kidney-specific cadherin (Ksp-cadherin) expression (Thomson
et al.,, 1995). When tubular cells are damaged, the number of Ksp-
cadherin positive tubular cells is decreased (Morizane et al., 2014).
Ischemia led to a decrease in the normalized number of Ksp-
cadherin positive tubular cells, but meclizine pretreatment partially
mitigated this decreased expression (0.32 £ 0.05 in the vehicle
group vs 0.74 £ 0.12 in the meclizine-treated group, when normal-
ized to sham-treated mice, p <0.05) (Fig. 3D and E). Electron micros-
copy revealed loss of brush borders of proximal tubule cells with
extensive damage to the mitochondria which is reflected by round
and fragmented mitochondria after IRI in vehicle-treated mice
(Fig. 3F and G) (Brooks et al., 2009). In contrast, the representative
images from a meclizine-pretreated kidney (Fig. 3H and I) showed
intact brush borders and many elongated mitochondria on the
basal side of the tubular cells. Mean mitochondrial area is 2.73 +
0.43 times greater in the vehicle vs meclizine pretreated kidney
(p<0.01) (Fig. 3]). These data revealed that meclizine reduced tubu-
lar damage-induced oxidative stress and inhibited IRI-induced mito-
chondrial structural changes.
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3.4. Meclizine Is Not Protective If Given After IRI or in Two Toxicity Models
of AKI

To evaluate whether meclizine would also be protective when
given after the injury had been already established, we treated
mice with 100 mg/kg of meclizine twice, one injection right after
reperfusion and a second injection 8 h after IRI. No significant differ-
ences were measured in serum creatinine levels, tubular necrosis
score or kidney KIM-1 mRNA (Havcr1) expression between the ve-
hicle and meclizine-treated group after IRI (Fig. 4A-D). There was
also no difference in the tissue mRNA expression of inflammatory
mediators (Fig. 4E). Thus protection by meclizine was limited to
preconditioning.

We also tested whether preconditioning with meclizine was effec-
tive in two toxicity models of AKI. Mice were treated with meclizine
17 h or 1 h before the injection of aristolochic acid or cisplatin. Serum
creatinine and urinary KIM-1 were measured at the peak of the toxic in-
jury, 5 days after aristolochic acid injection or 3 days after cisplatin in-
jection. Mice injected with aristolochic acid had increases in serum
creatinine levels and urinary KIM-1 compared to sham control mice.
In contrast to the protection observed with meclizine preconditioning
in the IRI model, pretreatment with meclizine either 17 h or 1 h before
aristolochic acid injection had no effect on creatinine and urinary KIM-1
levels (Fig. 4F, G). Mice injected with cisplatin had significant increases
in serum creatinine and urine KIM-1 levels, neither of which was mod-
ified by meclizine pretreatment (Fig. 4H, I).
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3.5. Meclizine Attenuates LDH and cytochrome c Release During 2-DG and
NaCN Treatment of Tubular Epithelial Cells

To evaluate whether meclizine protected kidney tubular epithelial
cells in vitro, cells were pretreated with meclizine 17 h prior to chemical
anoxia induced by 1.5 mM of NaCN and 10 mM of 2-DG. A significant
decrease of % LDH release in LLC-PK1 and HK-2 cells was observed in
cells pretreated with 25 pM of meclizine when compared with cells
pretreated with DMSO only (LLC-PK1 cells, 11.6 £ 3.2% vs 25.9 + 1.5,
p < 0.01, Fig. 5A, HK-2 cells, 27.0 & 5.9 vs 47.6 &+ 6.3%, p < 0.05,
Fig. 5B, respectively). Furthermore meclizine pretreatment blocked
the release of injury-associated cytochrome c from HK-2 cells exposed
to chemical anoxia (Fig. 5C, D).

3.6. Meclizine Up-regulates Glycolysis in Glucose Containing Media and
Reduces Cellular ATP Levels in Galactose Media

Culturing cells in galactose as a sugar source forces mammalian cells
to rely on mitochondrial oxidative phosphorylation (OXPHOS) (Aguer
etal, 2011; Gohil etal., 2010). LDH release was increased and cell viabil-
ity was reduced in galactose media when oxygen was decreased from
21 to 5%. A significant increase in % LDH release and decrease in cell vi-
ability were observed in cells cultured in 5% O, with 10 mM galactose
when compared with cells cultured in 5% O, with 25 mM glucose (%
LDH release: 33.0 4- 3.89 vs 15.7 4 0.24%, p < 0.05, Fig. 6A; cell viability:
12.0 4 4.23 vs 65.1 & 2.83%, p < 0.01, Fig. 6B). Cellular ATP levels also
decreased when cells were cultured in 5% O, with 10 mM galactose vs
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5% 02 with 25mM glucose (5.58 4= 0.46 vs 9.98 + 0.31 nmol/mg pro-
tein, p < 0.05, Fig. 6C). Thus culturing cells with galactose as an energy
source forces kidney tubular epithelial cells to rely on mitochondrial
oxidative respiration rather than glycolysis.

To evaluate whether pretreatment with meclizine affected energy
metabolism in vitro, lactate production of HK-2 cells was analyzed. Mec-
lizine pretreatment for 17 h in 21% O, increased lactate production
(51.61 £ 8.05 vs 25.87 + 3.67 nmol/h/mg, p < 0.05) in glucose containing
media (Fig. 6D). Meclizine pretreatment increased the mRNA levels of
representative enzymes of glycolysis, hexokinase 2 (Hk2), phosphoglyc-
erate kinase 1 (Pgk-1) and lactate dehydrogenase-A (Ldha) (Fig. 6E).
Meclizine pretreatment also decreased ATP levels in HK-2 cells grown in
galactose containing media for 24 h (2.3 &+ 0.12 vs 3.1 4 0.14 nmol/mg

protein, p < 0.05) (Fig. 6F). We did not observe HIF1-« stabilization
following meclizine pretreatment. As a positive control, CoCl, pretreat-
ment induced HIF1-« stabilization (Fig. 6G and H). Taken together,
these findings suggest that meclizine is capable of shifting reliance to
glycolysis relative to mitochondrial respiration in a HIF1-o independent
manner on HK-2 cells. Despite this decrease in cellular ATP levels, the
meclizine-pretreated cells were protected against injury (Fig. 5A-D).

3.7. Cellular Phosphoethanolamine Is Increased by Meclizine and Recapitu-
lates Meclizine-induced Protection

It has been shown that meclizine attenuated mitochondrial respira-
tion by targeting cytosolic phosphoethanolamine metabolism (Gohil
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et al,, 2013; Modica-Napolitano and Renshaw, 2004). Therefore, we
asked whether the protective effect of meclizine pretreatment on kid-
ney IRl is mediated through this pathway. As shown in Fig. 7A, meclizine
pretreatment increased intracellular phosphoethanolamine in HK-2
cells (6.0 + 0.62 vs 2.1 £ 0.10 uM, p < 0.05). Ethanolamine pretreatment
significantly decreased ATP levels when cells were cultured in galac-
tose-containing medium (3.0 £ 0.48 vs 5.2 4+ 0.54 nmol/mg protein,
p < 0.05) and was associated with increased lactate production
(37.57 £ 12.71 vs 24.50 + 3.18 nmol/h/mg, although not statistically
significant p = 0.3352) (Fig. 7B, C). Ethanolamine pretreatment also
inhibited % LDH release in response to 1.5 mM of NaCN and 10 mM of
2-DG-induced chemical hypoxia in HK-2 cells (10 pM: 23.9 4 4.6 vs
49.0 + 4.2%,p<0.01 and 100 pM: 28.9 + 5.2 vs 49.0 £ 4.2%, p < 0.05)
and LLC-PK1 cells (10 uM; 39.1 + 1.84 vs 65.0 & 4.39%, p < 0.05)
(Fig. 7D, E). When ethanolamine was given 2 h before ischemia, imme-
diately after and 24 h after reperfusion, there was a significant decrease
in BUN levels in mice exposed to IRl when compared to the vehicle
group (24 h: 88.23 4 12.23 vs 133.6 £+ 7.15 mg/dl, p < 0.05; 48 h:
84.13 £ 19.62 vs 150.8 4 12.26 mg/dl, p <0.05). Serum creatinine levels
at 24 h after IRI were also lower (1.25 4 0.24 vs 1.94 4 0.09 mg/dl,
p <0.05) (Fig. 7F, G). Compared with vehicle-injected mice, the renal
morphology of ethanolamine-injected mice showed less kidney injury
(Fig. 7H). These data revealed that phosphoethanolamine recapitulated
meclizine-induced protection both in vitro and in vivo.

4. Discussion

Meclizine is an attractive potential therapeutic agent for IRI, since it
is well established to be safe in humans and it has an unusual mecha-
nism of protection. Meclizine inhibits mitochondrial respiration. Mecli-
zine decreases post-ischemic serum creatinine levels when given at
least 17 h before injury. The fact that prolonged pretreatment is neces-
sary would make this safe drug appropriate for situations where there is
a predictable increase in the probability of developing AKI, such as

cardiac surgery, ICU stay or perhaps during allograft preservation prior
to transplantation.

The shift in cellular energy production from mitochondrial respira-
tion, which consumes oxygen, to anaerobic glycolysis, is a natural adap-
tation to reduced oxygen availability (Ramirez et al.,, 2007). Redirecting
energy metabolism toward anaerobic glycolysis can reduce ischemia-
induced ROS production, oxidative damage and suppress apoptosis
(Vaughn and Deshmukh, 2008; Jeong et al., 2004). We have shown
that meclizine attenuates mitochondrial respiration likely through
increase in cellular phosphoethanolamine and increases mRNA levels of
glycolytic enzymes and lactate production. Significantly lowered expres-
sion of post-ischemic HO-1 and iNOS in meclizine-treated mice reflect
decreased oxidative stress caused by IRI (Birk et al., 2013; Jeong et al.,
2004). This protective effect is brought about by a HIF-independent
mechanism (Gohil et al., 2010, 2013). Thus FDA-approved meclizine
shifts energy metabolism (Gohil et al., 2010) and may be a useful candi-
date for chemical ischemic preconditioning in kidney. While the doses
used here are high, more effective agents may be developed which can
be used at lower concentrations with potentially fewer off-target effects.

Reducing inflammation has been shown to be important for a better
outcome in IRI-related organ damage (Mauriz et al., 2001; Meng et al.,
2001). Meclizine pretreatment of mice attenuates IRI-induced kidney
tubular damage and is associated with a reduction of inflammation in-
cluding a reduction in granulocytes and expression of a number of cyto-
kine genes, all of which are well established to contribute to the post-
ischemic inflammatory milieu (Szeto et al., 2011) (Kielar et al., 2005)
(Kreisel et al., 2011).

Postischemic structural and functional changes in mitochondria are
closely linked (Kaasik et al., 2007). IRI in kidney induces fragmentation
of mitochondria which leads to sustained energetic deficits, release of
cytochrome c, and activation of cell death pathways in proximal tubule
epithelial cells (Brooks et al., 2009; Barsoum et al., 2006). We have
shown that meclizine attenuates mitochondrial structural changes and
release of cytochrome c.
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Meclizine does not protect the kidney when administered after the
initial injury. Acute exposure to meclizine did not decrease O, consump-
tion on kidney mitochondria isolated from mice (Gohil et al., 2010). By
contrast when mice received meclizine 17 h before IRI there was a de-
crease in isolated mitochondrial O, consumption. Thus meclizine must
be present prior to an insult to be effective for the reduction of mito-
chondrial respiration. Meclizine inhibits phosphate cytidylyltransferase
2 (PCYT2) and causes an increase in cytosolic phosphoethanolamine, an
ethanolamine derivative that is a central precursor in the biosynthesis of
membrane phospholipids (Gohil et al., 2013). High levels of intracellular
phosphoethanolamine inhibit mitochondrial respiration (Gohil et al.,
2013; Modica-Napolitano and Renshaw, 2004). Ethanolamine, a precur-
sor of phosphoethanolamine, also inhibits mitochondrial respiratory ac-
tivity (Modica-Napolitano and Renshaw, 2004; Gohil et al., 2013). In
this study we show that meclizine pretreatment increases intracellular
phosphoethanolamine in HK-2 cells and ethanolamine has protective
effects both in vitro in renal epithelial cells and in vivo in the kidney.
Thus a renoprotective effect of meclizine may be mediated by accumu-
lation of intracellular phosphoethanolamine (Fig. 71).

While the dose used in these studies is higher than the dose used clin-
ically in humans there was no meclizine induced weight loss or other ev-
idence for toxicity in mice at these doses (Gohil et al., 2010). At the dose
used in this study mice are protected against acetaminophen-induced
liver toxicity (Huang et al., 2004). Although meclizine is classified as a
histamine (H1) antagonist and a muscarinic acetylcholine receptor

antagonist, the other 64 annotated H1 receptor antagonists and 33 anno-
tated muscarinic antagonists in the original chemical library screen had
no effect on oxygen consumption (Gohil et al., 2010). It is likely that the
renal protective effect is independent of histaminergic or muscarinic sig-
naling or HIF-stabilization. This study justifies the further development
of meclizine-like agents that can be selected for their mitochondrial
effects and given to humans to affect mitochondrial respiration while
minimizing anti-histaminergic and anticholinergic effects and main-
taining efficacy in protecting against kidney injury.

We did not measure blood pressure. Although we closely monitored
and tightly controlled the body temperature between 36.5 and 37 °C
and the technical success of ischemia-reperfusion by checking the kid-
ney color after clamping and after removing the clips (Park et al., 2004;
Wei and Dong, 2012), we cannot completely exclude the possibility that
altered hemodynamics may contribute to a modification of kidney inju-
ry after ischemia-reperfusion.

In conclusion, we have shown that pretreatment with 100 mg/kg of
meclizine 17 or 24 h prior to ischemia protected mice from IRI. Meclizine
reduced mitochondrial oxygen consumption, and attenuated oxidative
stress and mitochondrial fragmentation after IRI. Meclizine induced in-
tracellular phosphoethanolamine accumulation which inhibits mito-
chondrial respiration. These findings suggest that pretreatment with
meclizine, or a derivative, may reduce kidney injury induced by shock,
sepsis, cardiovascular surgery and early allograft dysfunction. Further
studies of efficacy are required to rigorously determine optimal dosing
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17 h followed by 2 hr of chemical anoxia (n = 7). (E) LDH release from LLC-PK1 cells treated with 10 uM of EA for 17 h followed by 2 hr of chemical anoxia (n = 4). (F) BUN and
(G) serum creatinine concentrations at 24 and 48 h after IRI treated 2 h before, just after clamp removal and skin closure 24 h after ischemia with vehicle (n = 5) or EA (n = 4).
(H) Representative images of H&E and PAS-stained kidney sections 48 h after IRI. Original magnification 100 x, scale bar = 100 pm. (I) Summary of the mechanisms proposed for mec-
lizine-induced protective effects against ischemic injury. Meclizine inhibits phosphate cytidylyltransferase 2 (PCYT2) and causes an increase in cytosolic phosphoethanolamine, a central

precursor in the Kennedy pathway. High levels of intracellular phosphoethanolamine inhibit mitochondrial respiration. *

*p < 0.01 and *p < 0.05. Statistical significance was determined

using t test (A, B, C, F, G) or one-way ANOVA followed by Tukey's post-hoc test (D, E). The columns and error bars are the mean + SEM.

of this widely used drug with an excellent safety profile or a related drug
in humans.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.07.035.
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